Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.481
Filtrar
1.
BMC Med Genomics ; 17(1): 82, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581025

RESUMO

BACKGROUND: Gamma-glutamyltransferase 5 (GGT5), one of the two members in the GGT family (GGT1 and GGT5), plays a crucial role in oxidative regulation, inflammation promotion, and drug metabolism. Particularly in the tumorigenesis of various cancers, its significance has been recognized. Nevertheless, GGT5's role in gastric cancer (GC) remains ambiguous. This study delves into the function and prognostic significance of GGT5 in GC through a series of in vitro experiments. METHODS: Employing online bioinformatics analysis tools such as The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Kaplan-Meier plotter, and cBioPortal, we explored GGT5 characteristics and functions in GC. This encompassed aberrant expression, prognostic value, genomic alterations and mutations, immune cell infiltration, and associated signaling pathways. Immunohistochemistry was conducted to assess GGT5 expression in GC and adjacent normal tissues. Subsequently, univariate and multivariate logistic regression analyses were applied to investigate the associations between GGT5 and clinical characteristics. CCK8, wound healing, and migration assays were utilized to evaluate the impact of GGT5 on cell viability and migration. Additionally, Gene Set Enrichment Analysis (GSEA) and Western blot analysis were performed to scrutinize the activity of the epithelial-mesenchymal transformation (EMT) signaling pathway under GGT5 regulation. RESULTS: GGT5 exhibits upregulation in gastric cancer, with its overexpression significantly linked to histological differentiation in GC patients (P < 0.05). Multivariate analysis indicates that elevated GGT5 expression is an independent risk factor associated with poorer overall survival in gastric cancer patients (P < 0.05). In vitro experiments reveal that downregulation of GGT5 hampers the proliferation and migration of GC cell lines. Finally, GSEA using TCGA data highlights a significant correlation between GGT5 expression and genes associated with EMT, a finding further confirmed by Western blot analysis. CONCLUSIONS: GGT5 emerges as a promising prognostic biomarker and potential therapeutic target for GC.


Assuntos
Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
2.
Drug Dev Res ; 85(2): e22179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616512

RESUMO

The role of YTHDF2 in gastric cancer (GC) is controversial. Due to the limitations of technical difficulty and experimental period, research on completely knocking out YTHDF2 is rare. Therefore, further investigations are still needed to clarify the YTHDF2's clinical significance and biological function in GC. To carry out the investigation, an analysis was performed on the expression levels of YTHDF2 in both publicly available databases and samples obtained from patients with gastric cancer. Based on the complete knockout of YTHDF2 using the CRISPR-Cas9 system, in vivo and in vitro experiments were conducted to analyze the effects of YTHDF2 on tumor formation, radiotherapy and chemoradiotherapy resistance in GC. Our investigation revealed an increase in YTHDF2 levels in GC tissues, which was found to be associated with a negative prognosis. Under hypoxic conditions, high expression of YTHDF2 enhanced the invasion of gastric cancer cells, and high expression of YTHDF2 was associated with HIF-1a. YTHDF2 facilitated gastric cancer cell growth in vitro and in vivo. Moreover, the results of the present study demonstrated that YTHDF2 mediated the expression of CyclinD1 and stability of CyclinD1 mRNA. CyclinD1 knockdown inhibited YTHDF2-mediated GC cell proliferation whereas CyclinD1 overexpression ameliorated YTHDF2 knockdown-induced inhibition of GC progression. Furthermore, YTHDF2 also promoted resistance to DDP and CTX chemotherapy, along with radiotherapy treatment for GC cells. The findings suggested that YTHDF2 expression accelerated GC progression through a potential mechanism involving CyclinD1 expression, and enhanced chemoradiotherapy resistance. This indicated that YTHDF2 could be a promising prognostic biomarker and therapeutic target for individuals diagnosed with GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Quimiorradioterapia , Proliferação de Células , Proteínas de Ligação a RNA/genética
3.
Front Immunol ; 15: 1369087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617839

RESUMO

Introduction: The ErbB-2.1(TOB1) signaling transducer protein is a tumor-suppressive protein that actively suppresses the malignant phenotype of gastric cancer cells. Yet, TOB1 negatively regulates the activation and growth of different immune cells. Understanding the expression and role of TOB1 in the gastric cancer immune environment is crucial to maximize its potential in targeted immunotherapy. Methods: This study employed multiplex immunofluorescence analysis to precisely delineate and quantify the expression of TOB1 in immune cells within gastric cancer tissue microarrays. Univariate and multivariate Cox analyses were performed to assess the influence of clinical-pathological parameters, immune cells, TOB1, and double-positive cells on the prognosis of gastric cancer patients. Subsequent experiments included co-culture assays of si-TOB1-transfected neutrophils with AGS or HGC-27 cells, along with EdU, invasion, migration assays, and bioinformatics analyses, aimed at elucidating the mechanisms through which TOB1 in neutrophils impacts the prognosis of gastric cancer patients. Results: We remarkably revealed that TOB1 exhibits varying expression levels in both the nucleus (nTOB1) and cytoplasm (cTOB1) of diverse immune cell populations, including CD8+ T cells, CD66b+ neutrophils, FOXP3+ Tregs, CD20+ B cells, CD4+ T cells, and CD68+ macrophages within gastric cancer and paracancerous tissues. Significantly, TOB1 was notably concentrated in CD66b+ neutrophils. Survival analysis showed that a higher density of cTOB1/nTOB1+CD66b+ neutrophils was linked to a better prognosis. Subsequent experiments revealed that, following stimulation with the supernatant of tumor tissue culture, the levels of TOB1 protein and mRNA in neutrophils decreased, accompanied by enhanced apoptosis. HL-60 cells were successfully induced to neutrophil-like cells by DMSO. Neutrophils-like cells with attenuated TOB1 gene expression by si-TOB1 demonstrated heightened apoptosis, consequently fostering a malignant phenotype in AGS and HCG-27 cells upon co-cultivation. The subsequent analysis of the datasets from TCGA and TIMER2 revealed that patients with high levels of TOB1 combined neutrophils showed better immunotherapy response. Discussion: This study significantly advances our comprehension of TOB1's role within the immune microenvironment of gastric cancer, offering promising therapeutic targets for immunotherapy in this context.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neutrófilos , Linfócitos T CD8-Positivos , Imunoterapia , Microambiente Tumoral , Proteínas Supressoras de Tumor , Peptídeos e Proteínas de Sinalização Intracelular/genética
4.
Crit Rev Immunol ; 44(5): 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618724

RESUMO

Gastric cancer (GC) is highly heterogeneous and influenced by aging-related factors. This study aimed to improve individualized prognostic assessment of GC by identifying aging-related genes and subtypes. Immune scores of GC samples from GEO and TCGA databases were calculated using ESTIMATE and scored as high immune (IS_high) and low immune (IS_low). ssGSEA was used to analyze immune cell infiltration. Univariate Cox regression was employed to identify prognosis-related genes. LASSO regression analysis was used to construct a prognostic model. GSVA enrichment analysis was applied to determine pathways. CCK-8, wound healing, and Transwell assays tested the proliferation, migration, and invasion of the GC cell line (AGS). Cell cycle and aging were examined using flow cytometry, ß-galactosidase staining, and Western blotting. Two aging-related GC subtypes were identified. Subtype 2 was characterized as lower survival probability and higher risk, along with a more immune-responsive tumor microenvironment. Three genes (IGFBP5, BCL11B, and AKR1B1) screened from aging-related genes were used to establish a prognosis model. The AUC values of the model were greater than 0.669, exhibiting strong prognostic value. In vitro, IGFBP5 overexpression in AGS cells was found to decrease viability, migration, and invasion, alter the cell cycle, and increase aging biomarkers (SA-ß-galactosidase, p53, and p21). This analysis uncovered the immune characteristics of two subtypes and aging-related prognosis genes in GC. The prognostic model established for three aging-related genes (IGFBP5, BCL11B, and AKR1B1) demonstrated good prognosis performance, providing a foundation for personalized treatment strategies aimed at GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Prognóstico , Envelhecimento , beta-Galactosidase , Proteínas Supressoras de Tumor , Microambiente Tumoral/genética , Proteínas Repressoras , Aldeído Redutase
5.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612926

RESUMO

A spectrum of immune states resulting from tumor resident macrophages and T-lymphocytes in the solid tumor microenvironment correlates with patient outcomes. We hypothesized that in gastric cancer (GC), macrophages in a polarized immunosuppressive transcriptional state would be prognostic of poor survival. We derived transcriptomic signatures for M2 (M2TS, MRC1; MS4A4A; CD36; CCL13; CCL18; CCL23; SLC38A6; FGL2; FN1; MAF) and M1 (M1TS, CCR7; IL2RA; CXCL11; CCL19; CXCL10; PLA1A; PTX3) macrophages, and cytolytic T-lymphocytes (CTLTS, GZMA; GZMB; GZMH; GZMM; PRF1). Primary GC in a TCGA stomach cancer dataset was evaluated for signature expressions, and a log-rank test determined overall survival (OS) and the disease-free interval (DFI). In 341 TCGA GC entries, high M2TS expression was associated with histological types and later stages. Low M2TS expression was associated with significantly better 5-year OS and DFI. We validated M2TS in prospectively collected peritoneal fluid of a GC patient cohort (n = 28). Single-cell RNA sequencing was used for signature expression in CD68+CD163+ cells and the log-rank test compared OS. GC patients with high M2TS in CD68+CD163+ cells in their peritoneal fluid had significantly worse OS than those with low expression. Multivariate analyses confirmed M2TS was significantly and independently associated with survival. As an independent predictor of poor survival, M2TS may be prognostic in primary tumors and peritoneal fluid of GC patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Peritônio , Macrófagos Peritoneais , Biomarcadores , Macrófagos , Microambiente Tumoral/genética , Fibrinogênio
6.
J Environ Pathol Toxicol Oncol ; 43(3): 81-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38608147

RESUMO

Gastric cancer (GC) is the fifth most prevalent malignancy worldwide, characterized by poor prognosis. Apoptosis is interacted with hypoxia in tumorigenesis. This study attempted to delineate potential value of apoptosis and hypoxia-related genes (AHRGs) in prognosis of gastric cancer. Differential expression analysis was performed on GC transcriptomic data from TCGA. Apoptosis-related genes (ARGs) and hypoxia-related genes (HRGs) were obtained from MSigDB, followed by intersecting them with differentially expressed genes (DEGs) in GC. A prognostic model was constructed using univariate, LASSO, and multivariate regression analyses. The model was validated using a Gene Expression Omnibus dataset. DEGs between risk groups were subjected to enrichment analysis. A nomogram was plotted by incorporating clinical information. Non-negative matrix factorization based on core prognostic genes from the multifactorial model was employed to cluster tumor samples. The subsequent analyses involved immunophenoscore, immune landscape, Tumor Immune Dysfunction and Exclusion (TIDE) score, and chemosensitivity for distinct subtypes. A prognostic model based on AHRGs was established, and its predictive capability was verified in external cohorts. Riskscore was determined as an independent prognostic factor, and it was used, combined with other clinical features, to plot a prognostic nomogram. Patients were clustered into cluster1 and cluster2 based on prognostic model genes. Cluster2 showed poorer prognosis and IPS scores, higher immune cell infiltration, immune function and TIDE scores than cluster1. Distinct therapeutic potential for various chemotherapeutic agents was observed between the two clusters. The developed AHRG scoring introduced a novel and effective avenue for predicting GC prognosis and identifying potential targets for further investigation.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Prognóstico , Apoptose/genética , Hipóxia/genética , Carcinogênese
7.
Commun Biol ; 7(1): 399, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565940

RESUMO

The occurrence of chemoresistance is an inescapable obstacle affecting the clinical efficacy of cisplatin in gastric cancer (GC). Exploring the regulatory mechanism of cisplatin resistance will help to provide potential effective targets for improving the prognosis of gastric cancer patients. Here, we find that FAM120A is upregulated in GC tissues and higher in cisplatin-resistant GC tissues, and its high expression is positively correlated with the poor outcome of GC patients. Functional studies indicate that FAM120A confers chemoresistance to GC cells by inhibiting ferroptosis. Mechanically, METTL3-induced m6A modification and YTHDC1-induced stability of FAM120A mRNA enhance FAM120A expression. FAM120A inhibits ferroptosis by binding SLC7A11 mRNA and enhancing its stability. FAM120A deficiency enhances cisplatin sensitivity by promoting ferroptosis in vivo. These results reveal the function of FAM120A in chemotherapy tolerance and targeting FAM120A is an effective strategy to alleviate cisplatin resistance in GC.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ferroptose/genética , Metiltransferases , RNA Mensageiro , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
8.
Sci Rep ; 14(1): 7648, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561388

RESUMO

Natural killer (NK) cells play essential roles in the tumor development, diagnosis, and prognosis of tumors. In this study, we aimed to establish a reliable signature based on marker genes in NK cells, thus providing a new perspective for assessing immunotherapy and the prognosis of patients with gastric cancer (GC). We analyzed a total of 1560 samples retrieved from the public database. We performed a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of gastric cancer and identified 377 marker genes for NK cells. By performing Cox regression analysis, we established a 12-gene NK cell-associated signature (NKCAS) for the Cancer Genome Atlas (TCGA) cohort, that assigned GC patients into a low-risk group (LRG) or a high-risk group (HRG). In the TCGA cohort, the areas under curve (AUC) value were 0.73, 0.81, and 0.80 at 1, 3, and 5 years. External validation of the predictive ability for the signature was then validated in the Gene Expression Omnibus (GEO) cohorts (GSE84437). The expression levels of signature genes were measured and validated in GC cell lines by real-time PCR. Moreover, NKCAS was identified as an independent prognostic factor by multivariate analysis. We combined this with a variety of clinicopathological characteristics (age, M stage, and tumor grade) to construct a nomogram to predict the survival outcomes of patients. Moreover, the LRG showed higher immune cell infiltration, especially CD8+ T cells and NK cells. The risk score was negatively associated with inflammatory activities. Importantly, analysis of the independent immunotherapy cohort showed that the LRG had a better prognosis and immunotherapy response when compared with the HRG. The identification of NK cell marker genes in this study suggests potential therapeutic targets. Additionally, the developed predictive signatures and nomograms may aid in the clinical management of GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Prognóstico , Sequência de Bases , Imunoterapia , RNA , Microambiente Tumoral
9.
Sci Rep ; 14(1): 7683, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561502

RESUMO

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Citocinas/metabolismo , Helicobacter pylori/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Helicobacter/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Gastrite/patologia , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo
10.
BMC Cancer ; 24(1): 404, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561648

RESUMO

BACKGROUND: Accurate microsatellite instability (MSI) testing is essential for identifying gastric cancer (GC) patients eligible for immunotherapy. We aimed to develop and validate a CT-based radiomics signature to predict MSI and immunotherapy outcomes in GC. METHODS: This retrospective multicohort study included a total of 457 GC patients from two independent medical centers in China and The Cancer Imaging Archive (TCIA) databases. The primary cohort (n = 201, center 1, 2017-2022), was used for signature development via Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression analysis. Two independent immunotherapy cohorts, one from center 1 (n = 184, 2018-2021) and another from center 2 (n = 43, 2020-2021), were utilized to assess the signature's association with immunotherapy response and survival. Diagnostic efficiency was evaluated using the area under the receiver operating characteristic curve (AUC), and survival outcomes were analyzed via the Kaplan-Meier method. The TCIA cohort (n = 29) was included to evaluate the immune infiltration landscape of the radiomics signature subgroups using both CT images and mRNA sequencing data. RESULTS: Nine radiomics features were identified for signature development, exhibiting excellent discriminative performance in both the training (AUC: 0.851, 95%CI: 0.782, 0.919) and validation cohorts (AUC: 0.816, 95%CI: 0.706, 0.926). The radscore, calculated using the signature, demonstrated strong predictive abilities for objective response in immunotherapy cohorts (AUC: 0.734, 95%CI: 0.662, 0.806; AUC: 0.724, 95%CI: 0.572, 0.877). Additionally, the radscore showed a significant association with PFS and OS, with GC patients with a low radscore experiencing a significant survival benefit from immunotherapy. Immune infiltration analysis revealed significantly higher levels of CD8 + T cells, activated CD4 + B cells, and TNFRSF18 expression in the low radscore group, while the high radscore group exhibited higher levels of T cells regulatory and HHLA2 expression. CONCLUSION: This study developed a robust radiomics signature with the potential to serve as a non-invasive biomarker for GC's MSI status and immunotherapy response, demonstrating notable links to post-immunotherapy PFS and OS. Additionally, distinct immune profiles were observed between low and high radscore groups, highlighting their potential clinical implications.


Assuntos
60570 , Neoplasias Gástricas , Humanos , Estudos de Coortes , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Estudos Retrospectivos , Instabilidade de Microssatélites , Imunoterapia , Tomografia Computadorizada por Raios X , Imunoglobulinas
11.
J Exp Clin Cancer Res ; 43(1): 106, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589927

RESUMO

INTRODUCTION: Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Recently, targeted therapies including PD1 (programmed cell death 1) antibodies have been used in advanced GC patients. However, identifying new biomarker for immunotherapy is still urgently needed. The objective of this study is to unveil the immune evasion mechanism of GC cells and identify new biomarkers for immune checkpoint blockade therapy in patients with GC. METHODS: Coimmunoprecipitation and meRIP were performed to investigate the mechanism of immune evasion of GC cells. Cocuture system was established to evaluate the cytotoxicity of cocultured CD8+ T cells. The clinical significance of HSPA4 upregulation was analyzed by multiplex fluorescent immunohistochemistry staining in GC tumor tissues. RESULTS: Histone acetylation causes HSPA4 upregulation in GC tumor tissues. HSPA4 upregulation increases the protein stability of m6A demethylase ALKBH5. ALKBH5 decreases CD58 in GC cells through m6A methylation regulation. The cytotoxicity of CD8+ T cells are impaired and PD1/PDL1 axis is activated when CD8+ T cells are cocultured with HSPA4 overexpressed GC cells. HSPA4 upregulation is associated with worse 5-year overall survival of GC patients receiving only surgery. It is an independent prognosis factor for worse survival of GC patients. In GC patients receiving the combined chemotherapy with anti-PD1 immunotherapy, HSPA4 upregulation is observed in responders compared with non-responders. CONCLUSION: HSPA4 upregulation causes the decrease of CD58 in GC cells via HSPA4/ALKBH5/CD58 axis, followed by PD1/PDL1 activation and impairment of CD8+ T cell's cytotoxicity, finally induces immune evasion of GC cells. HSPA4 upregulation is associated with worse overall survival of GC patients with only surgery. Meanwhile, HSPA4 upregulation predicts for better response in GC patients receiving the combined immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Gástricas , Humanos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulação para Cima , Evasão da Resposta Imune , Quimioterapia Combinada , Proteínas de Choque Térmico HSP110/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
12.
Front Immunol ; 15: 1358511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596668

RESUMO

Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.


Assuntos
Infecções por Vírus Epstein-Barr , Patologia Clínica , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Neoplasias Gástricas/genética , Herpesvirus Humano 4/fisiologia , Prognóstico , Microambiente Tumoral
13.
BMC Cancer ; 24(1): 502, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643078

RESUMO

BACKGROUND: Paclitaxel is commonly used as a second-line therapy for advanced gastric cancer (AGC). The decision to proceed with second-line chemotherapy and select an appropriate regimen is critical for vulnerable patients with AGC progressing after first-line chemotherapy. However, no predictive biomarkers exist to identify patients with AGC who would benefit from paclitaxel-based chemotherapy. METHODS: This study included 288 patients with AGC receiving second-line paclitaxel-based chemotherapy between 2017 and 2022 as part of the K-MASTER project, a nationwide government-funded precision medicine initiative. The data included clinical (age [young-onset vs. others], sex, histology [intestinal vs. diffuse type], prior trastuzumab use, duration of first-line chemotherapy), and genomic factors (pathogenic or likely pathogenic variants). Data were randomly divided into training and validation sets (0.8:0.2). Four machine learning (ML) methods, namely random forest (RF), logistic regression (LR), artificial neural network (ANN), and ANN with genetic embedding (ANN with GE), were used to develop the prediction model and validated in the validation sets. RESULTS: The median patient age was 64 years (range 25-91), and 65.6% of those were male. A total of 288 patients were divided into the training (n = 230) and validation (n = 58) sets. No significant differences existed in baseline characteristics between the training and validation sets. In the training set, the areas under the ROC curves (AUROC) for predicting better progression-free survival (PFS) with paclitaxel-based chemotherapy were 0.499, 0.679, 0.618, and 0.732 in the RF, LR, ANN, and ANN with GE models, respectively. The ANN with the GE model that achieved the highest AUROC recorded accuracy, sensitivity, specificity, and F1-score performance of 0.458, 0.912, 0.724, and 0.579, respectively. In the validation set, the ANN with GE model predicted that paclitaxel-sensitive patients had significantly longer PFS (median PFS 7.59 vs. 2.07 months, P = 0.020) and overall survival (OS) (median OS 14.70 vs. 7.50 months, P = 0.008). The LR model predicted that paclitaxel-sensitive patients showed a trend for longer PFS (median PFS 6.48 vs. 2.33 months, P = 0.078) and OS (median OS 12.20 vs. 8.61 months, P = 0.099). CONCLUSIONS: These ML models, integrated with clinical and genomic factors, offer the possibility to help identify patients with AGC who may benefit from paclitaxel chemotherapy.


Assuntos
Neoplasias Gástricas , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Paclitaxel/uso terapêutico , Trastuzumab/uso terapêutico , Intervalo Livre de Progressão , Genômica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
14.
J Biochem Mol Toxicol ; 38(4): e23705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602237

RESUMO

We explored the role and mechanism of circular RNAcircNRD1 in gastric cancer (GC) progression, aiming to identify new bio-markers for the treatment and prognosis of GC patients. The RNA expression was examined by reverse transcription-quantitative polymerase chain reaction. Cell proliferation, migration and invasion were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, scratch assay and transwell assay. Western blot assay was conducted for protein expression measurement. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were conducted to verify the interaction between microRNA-421 (miR-421) and circNRD1 or THAP domain containing 11 (THAP11). Xenograft tumor model was established to perform in vivo experiments. CircNRD1 was notably downregulated in GC tissues and cell lines. Additionally, decreased circNRD1 level was closely associated with advanced tumor stage and dismal prognosis in GC patients. CircNRD1 overexpression suppressed the proliferation and metastasis of GC cells. CircNRD1 acted as a molecular sponge for miR-421 in GC cells, and the antitumor impacts of circNRD1 overexpression in GC cells could be alleviated by miR-421 overexpression. miR-421 directly targeted THAP11, and circNRD1 could up-regulate THAP11 expression in GC cells through sponging miR-421. THAP11 knockdown reversed circNRD1 overexpression-induced tumor suppressing effects in GC cells. CircNRD1 overexpression significantly blocked tumor growth in vivo. CircNRD1 suppressed the proliferation and metastasis of GC cells in vitro and blocked tumor growth in vivo via modulating miR-421/THAP11 axis.


Assuntos
MicroRNAs , RNA Circular , Neoplasias Gástricas , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , MicroRNAs/genética , Proteínas Repressoras , Neoplasias Gástricas/genética , RNA Circular/metabolismo
15.
Funct Integr Genomics ; 24(3): 77, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632140

RESUMO

BACKGROUND: Gastric cancer (GC) remains a leading cause of cancer mortality globally. Synaptotagmin-4 (SYT4), a calcium-sensing synaptic vesicle protein, has been implicated in the oncogenesis of diverse malignancies. PURPOSE: This study delineates the role of SYT4 in modulating clinical outcomes and biological behaviors in GC. METHODS: We evaluated SYT4 expression in GC specimens using bioinformatics analyses and immunohistochemistry. Functional assays included CCK8 proliferation tests, apoptosis assays via flow cytometry, confocal calcium imaging, and xenograft models. Western blotting elucidated MAPK pathway involvement. Additionally, we investigated the impact of the calcium channel blocker amlodipine on cellular dynamics and MAPK pathway activity. RESULTS: SYT4 was higher in GC tissues, and the elevated SYT4 was significantly correlated with adverse prognosis. Both univariate and multivariate analyses confirmed SYT4 as an independent prognostic indicator for GC. Functionally, SYT4 promoted tumorigenesis by fostering cellular proliferation, inhibiting apoptosis, and enhancing intracellular Ca2+ influx, predominantly via MAPK pathway activation. Amlodipine pre-treatment attenuated SYT4-driven cell growth and potentiated apoptosis, corroborated by in vivo xenograft assessments. These effects were attributed to MAPK pathway suppression by amlodipine. CONCLUSION: SYT4 emerges as a potential prognostic biomarker and a pro-oncogenic mediator in GC through a Ca2+-dependent MAPK mechanism. Amlodipine demonstrates significant antitumor effects against SYT4-driven GC, positing its therapeutic promise. This study underscores the imperative of targeting calcium signaling in GC treatment strategies.


Assuntos
Anlodipino , Neoplasias Gástricas , Humanos , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Anlodipino/farmacologia , Anlodipino/uso terapêutico , Cálcio/metabolismo , Neoplasias Gástricas/genética , Sinalização do Cálcio , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
16.
BMC Cancer ; 24(1): 465, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622522

RESUMO

BACKGROUND: Gastric cancer (GC) lacks serum biomarkers with clinical diagnostic value. Multi-omics analysis is an important approach to discovering cancer biomarkers. This study aimed to identify and validate serum biomarkers for GC diagnosis by cross-analysis of proteomics and transcriptomics datasets. METHODS: A cross-omics analysis was performed to identify overlapping differentially expressed genes (DEGs) between our previous aptamer-based GC serum proteomics dataset and the GC tissue RNA-Seq dataset in The Cancer Genome Atlas (TCGA) database, followed by lasso regression and random forest analysis to select key overlapping DEGs as candidate biomarkers for GC. The mRNA levels and diagnostic performance of these candidate biomarkers were analyzed in the original and independent GC datasets to select valuable candidate biomarkers. The valuable candidate biomarkers were subjected to bioinformatics analysis to select those closely associated with the biological behaviors of GC as potential biomarkers. The clinical diagnostic value of the potential biomarkers was validated using serum samples, and their expression levels and functions in GC cells were validated using in vitro cell experiments. RESULTS: Four candidate biomarkers (ILF2, PGM2L1, CHD7, and JCHAIN) were selected. Their mRNA levels differed significantly between tumor and normal tissues and showed different diagnostic performances for GC, with areas under the receiver operating characteristic curve (AUROCs) of 0.629-0.950 in the TCGA dataset and 0.736-0.840 in the Gene Expression Omnibus (GEO) dataset. In the bioinformatics analysis, only ILF2 (interleukin enhancer-binding factor 2) gene levels were associated with immune cell infiltration, some checkpoint gene expression, chemotherapy sensitivity, and immunotherapy response. Serum levels of ILF2 were higher in GC patients than in controls, with an AUROC of 0.944 for the diagnosis of GC, and it was also detected in the supernatants of GC cells. Knockdown of ILF2 by siRNA significantly reduced the proliferation and colony formation of GC cells. Overexpression of ILF2 significantly promotes the proliferation and colony formation of gastric cancer cells. CONCLUSIONS: Trans-omics analysis of proteomics and transcriptomics is an efficient approach for discovering serum biomarkers, and ILF2 is a potential diagnostic biomarker and therapeutic target of gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína do Fator Nuclear 45/genética
17.
BMC Gastroenterol ; 24(1): 136, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627627

RESUMO

BACKGROUND: The incidence of gastric cancer ranks the first among digestive tract tumors in China. However, there are no specific symptoms in the early stage of the tumor and the diagnosis process is complex, so more effective detection methods are very needed. In this study, a novel long noncoding RNA (lncRNA) was introduced as a diagnostic biomarker for gastric cancer, which brought new thinking to the exploration of its pathological mechanism and clinical prediction. METHODS: The level of lncRNA EPB41L4A-AS1 (EPB41L4A-AS1) in gastric cancer serum and cells was verified via real-time quantitative polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve was performed based on the EPB41L4A-AS1 level, and the diagnostic possibility of EPB41L4A-AS was analyzed. The chi-square test evaluated the correlation between EPB41L4A-AS expression and clinical information. The cells were cultured and transfected in vitro, and the mediations of abnormal EPB41L4A-AS level on the viability and motility of gastric cancer cells were verified through cell counting kit-8 (CCK-8) and Transwell assay. Furthermore, luciferase activity assay was performed to confirm the sponge molecule microRNA-17-5p (miR-17-5p) of EPB41L4A-AS1. RESULTS: EPB41L4A-AS1 was decreased in gastric cancer, and low EPB41L4A-AS1 level indicated resultful diagnostic value. Overexpression of EPB41L4A-AS1 inhibited the activity of gastric cancer cells, while knockdown of EPB41L4A-AS1 promoted tumor deterioration. EPB41L4A-AS1 directly targeted and regulated the expression ofmiR-17-5p. CONCLUSION: This study elaborated that EPB41L4A-AS1 is lowly expressed in gastric cancer. Silencing EPB41L4A-AS1 was beneficial to cell proliferation, migration, and invasion. EPB41L4A-AS1 provides a new possibility for the diagnosis of gastric cancer patients by targeting miR-17-5p.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Baixo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
18.
Cell Death Dis ; 15(4): 248, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575587

RESUMO

Gastric cancer (GC) contains subpopulations of cancer stem cells (CSCs), which are described as the main contributors in tumor initiation and metastasis. It is necessary to clarify the molecular mechanism underlying CSCs phenotype and develop novel biomarkers and therapeutic targets for gastric cancer. Here, we show that POLQ positively regulates stem cell-like characteristics of gastric cancer cells, knockdown of POLQ suppressed the stemness of GC cells in vitro and in vivo. Further mechanistic studies revealed that POLQ knockdown could downregulate the expression of dihydroorotate dehydrogenase (DHODH). DHODH overexpression rescued the reduced stemness resulted by POLQ knockdown. Furthermore, we found that POLQ expression correlated with resistance to ferroptosis, and POLQ inhibition renders gastric cancer cells more vulnerable to ferroptosis. Further investigation revealed that POLQ regulated DHODH expression via the transcription factors E2F4, thereby regulating ferroptosis resistance and stemness of gastric cancer cells. Given the importance of POLQ in stemness and ferroptosis resistance of GC, we further evaluated the therapeutic potential of POLQ inhibitor novobiocin, the results show that novobiocin attenuates the stemness of GC cells and increased ferroptosis sensitivity. Moreover, the combination of POLQ inhibitor and ferroptosis inducer synergistically suppressed MGC-803 xenograft tumor growth and diminished metastasis. Our results identify a POLQ-mediated stemness and ferroptosis defense mechanism and provide a new therapeutic strategy for gastric cancer.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Regulação para Baixo/genética , Ferroptose/genética , Novobiocina , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
19.
Clin Transl Med ; 14(4): e1653, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38616702

RESUMO

INTRODUCTION: Hypoxia is an important characteristic of gastric mucosal diseases, and hypoxia-inducible factor-1α (HIF-1α) contributes to microenvironment disturbance and metabolic spectrum abnormalities. However, the underlying mechanism of HIF-1α and its association with mitochondrial dysfunction in gastric mucosal lesions under hypoxia have not been fully clarified. OBJECTIVES: To evaluate the effects of hypoxia-induced HIF-1α on the development of gastric mucosal lesions. METHODS: Portal hypertensive gastropathy (PHG) and gastric cancer (GC) were selected as representative diseases of benign and malignant gastric lesions, respectively. Gastric tissues from patients diagnosed with the above diseases were collected. Portal hypertension (PHT)-induced mouse models in METTL3 mutant or NLRP3-deficient littermates were established, and nude mouse gastric graft tumour models with relevant inhibitors were generated. The mechanisms underlying hypoxic condition, mitochondrial dysfunction and metabolic alterations in gastric mucosal lesions were further analysed. RESULTS: HIF-1α, which can mediate mitochondrial dysfunction via upregulation of METTL3/IGF2BP3-dependent dynamin-related protein 1 (Drp1) N6-methyladenosine modification to increase mitochondrial reactive oxygen species (mtROS) production, was elevated under hypoxic conditions in human and mouse portal hypertensive gastric mucosa and GC tissues. While blocking HIF-1α with PX-478, inhibiting Drp1-dependent mitochondrial fission via mitochondrial division inhibitor 1 (Mdivi-1) treatment or METTL3 mutation alleviated this process. Furthermore, HIF-1α influenced energy metabolism by enhancing glycolysis via lactate dehydrogenase A. In addition, HIF-1α-induced Drp1-dependent mitochondrial fission also enhanced glycolysis. Drp1-dependent mitochondrial fission and enhanced glycolysis were associated with alterations in antioxidant enzyme activity and dysfunction of the mitochondrial electron transport chain, resulting in massive mtROS production, which was needed for activation of NLRP3 inflammasome to aggravate the development of the PHG and GC. CONCLUSIONS: Under hypoxic conditions, HIF-1α enhances mitochondrial dysfunction via Drp1-dependent mitochondrial fission and influences the metabolic profile by altering glycolysis to increase mtROS production, which can trigger NLRP3 inflammasome activation and mucosal microenvironment alterations to contribute to the development of benign and malignant gastric mucosal lesions.


Assuntos
Doenças Mitocondriais , Neoplasias Gástricas , Animais , Humanos , Camundongos , Antioxidantes , Inflamassomos , Metiltransferases , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neoplasias Gástricas/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...